MIT Kerberos asn1_decode_generaltime() Uninitialized Pointer Memory Corruption Vulnerability
Publish date: July 21, 2015
Severity: CRITICAL
CVE Identifier: CVE-2009-0846
Advisory Date: JUL 21, 2015
DESCRIPTION
The asn1_decode_generaltime function in lib/krb5/asn.1/asn1_decode.c in the ASN.1 GeneralizedTime decoder in MIT Kerberos 5 (aka krb5) before 1.6.4 allows remote attackers to cause a denial of service (daemon crash) or possibly execute arbitrary code via vectors involving an invalid DER encoding that triggers a free of an uninitialized pointer.
TREND MICRO PROTECTION INFORMATION
Apply associated Trend Micro DPI Rules.
SOLUTION
Trend Micro Deep Security DPI Rule Number: 1003420
Trend Micro Deep Security DPI Rule Name: 1003420 - MIT Kerberos asn1_decode_generaltime() Uninitialized Pointer Memory Corruption
AFFECTED SOFTWARE AND VERSION
- mit kerberos 5
- mit kerberos 5-1.1
- mit kerberos 5-1.2
- mit kerberos 5-1.2.1
- mit kerberos 5-1.2.2
- mit kerberos 5-1.2.3
- mit kerberos 5-1.2.4
- mit kerberos 5-1.2.5
- mit kerberos 5-1.2.6
- mit kerberos 5-1.2.7
- mit kerberos 5-1.2.8
- mit kerberos 5-1.3
- mit kerberos 5-1.3.1
- mit kerberos 5-1.3.2
- mit kerberos 5-1.3.3
- mit kerberos 5-1.3.4
- mit kerberos 5-1.3.5
- mit kerberos 5-1.3.6
- mit kerberos 5-1.4
- mit kerberos 5-1.4.1
- mit kerberos 5-1.4.2
- mit kerberos 5-1.4.3
- mit kerberos 5-1.4.4
- mit kerberos 5-1.5
- mit kerberos 5-1.5.1
- mit kerberos 5-1.5.2
- mit kerberos 5-1.5.3
- mit kerberos 5-1.6
- mit kerberos 5-1.6.1
- mit kerberos 5-1.6.2
- mit kerberos 5-1.6.3
- mit kerberos 5_1.0
- mit kerberos 5_1.0.6
- mit kerberos 5_1.1
- mit kerberos 5_1.1.1
- mit kerberos 5_1.2
- mit kerberos 5_1.3.3
Featured Stories
- Unveiling AI Agent Vulnerabilities Part V: Securing LLM ServicesTo conclude our series on agentic AI, this article examines emerging vulnerabilities that threaten AI agents, focusing on providing proactive security recommendations on areas such as code execution, data exfiltration, and database access.Read more
- Unveiling AI Agent Vulnerabilities Part IV: Database Access VulnerabilitiesHow can attackers exploit weaknesses in database-enabled AI agents? This research explores how SQL generation vulnerabilities, stored prompt injection, and vector store poisoning can be weaponized by attackers for fraudulent activities.Read more
- The Mirage of AI Programming: Hallucinations and Code IntegrityThe adoption of large language models (LLMs) and Generative Pre-trained Transformers (GPTs), such as ChatGPT, by leading firms like Microsoft, Nuance, Mix and Google CCAI Insights, drives the industry towards a series of transformative changes. As the use of these new technologies becomes prevalent, it is important to understand their key behavior, advantages, and the risks they present.Read more
- Open RAN: Attack of the xAppsThis article discusses two O-RAN vulnerabilities that attackers can exploit. One vulnerability stems from insufficient access control, and the other arises from faulty message handlingRead more